
@fntlnz

eBPF powered,
distributed Kubernetes
performance analysis

Yes, the title is very long...

O’Reilly Velocity - Berlin, 2019

@fntlnz

Lorenzo
Fontana

Open Source Software Engineer
Sysdig

Tweets at @fntlnz

Friendly person

@fntlnz@fntlnz

Who here has never struggled
trying to understand what’s going on in a

Kubernetes cluster?

@fntlnz@fntlnz

Why performance analysis is harder on
Kubernetes?

@fntlnz@fntlnz

Kubernetes is an abstraction layer

@fntlnz@fntlnz

Kubernetes complexity reflects on your
ability to observe what’s going on under

the abstraction

@fntlnz@fntlnz

Performance analysis on Kubernetes
makes me cry

@fntlnz@fntlnz

Performance analysis tooling
is very tied to the languages

@fntlnz@fntlnz

Our kubernetes cluster speaks many
different languages.

We need
language agnostic tools

@fntlnz@fntlnz

What are my options then?

@fntlnz

Many options

strace

In-code
(as having the performance

analysis code in the
application itself)

Read /proc and
/sys filesystems

Kernel modules

Valgrind

kubernetes unaware

Top, htop, iotop,
etc..

eBPF

perf

@fntlnz

Many options

strace

In-code
(as having the performance

analysis code in the
application itself)

Read /proc and
/sys filesystems

Kernel modules

Valgrind

kubernetes unaware

Top, htop, iotop,
etc..

eBPF

Slows down applications,
makes them unstable

Slows down applications

HARD to write, maintain,
crazy stuff, DEATH

Good luck with the
performance impact

Very limited

Very limited

perf

Can see everything
Can also use eBPF
Very limited in integrating
with other tools

Can see everything
Very programmable
Fast
Lots of tools available

@fntlnz@fntlnz

Ok, but…..

@fntlnz@fntlnz

Kubernetes is distributed

@fntlnz@fntlnz

Tooling exists but is not aware
of the abstraction

@fntlnz@fntlnz

Tooling exists but it was made for
people to use over SSH

@fntlnz@fntlnz

Kubernetes SSH is the kubectl

@fntlnz@fntlnz

Kubernetes SSH is the kubectl
kube-cattle

@fntlnz@fntlnz

Abstraction

Application

Kubernetes

OS

Kernel

Hardware

@fntlnz@fntlnz

Abstraction

Application

Kubernetes

OS

Kernel

Hardware

The interesting stuff is here

@fntlnz@fntlnz

Abstraction

Application

Kubernetes

OS

Kernel

Hardware

And it knows about
the whole thing...

@fntlnz@fntlnz

Abstraction

Application

Kubernetes

OS

Kernel

Hardware

You can ask everything at this level
using an eBPF program

@fntlnz

How to
Kubernetes + eBPF?

They want to be together, we need to help them.

@fntlnz@fntlnz

eBPF in a POD

@fntlnz@fntlnz

eBPF using a CRD

@fntlnz@fntlnz

eBPF in the kubectl

@fntlnz

eBPF in a POD

Pros:

- Very customizable
- Easy deployment
- No need to install anything

Cons:

- Need to write boilerplate

Easy peasy lemon squeezy

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

Yes, this is a Go constant
containing C code

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

The C code

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

This image uses a compiled
version of our BPF loader
as entrypoint

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

@fntlnz

eBPF in a Pod

I wanted to expose a
Prometheus endpoint
but the program is yours,
do what YOU want

@fntlnz

eBPF in a Pod

Full example repository on GitHub

https://github.com/bpftools/prometheus-ebpf-example

https://github.com/bpftools/prometheus-ebpf-example

@fntlnz

eBPF using a
CRD

Pros:

- No boilerplate
- Easy to use
- Automatically expose a

Prometheus endpoint for every
map you create

- A pod on every node

Cons:

- Need to deploy the Controller
- Not very extensible

I’m that Kind: of person

@fntlnz

eBPF using a CRD

@fntlnz

eBPF using a CRD

@fntlnz

eBPF using a CRD

@fntlnz

eBPF using a CRD

@fntlnz

eBPF using a CRD

Base64 ELF

@fntlnz

eBPF using a CRD

@fntlnz

eBPF using a CRD

Comes from https://github.com/bpftools/kube-bpf

https://github.com/bpftools/kube-bpf

@fntlnz

eBPF using a CRD

Gets the ELF from the ConfigMap

@fntlnz

eBPF using a CRD

@fntlnz

eBPF using a CRD

Learn more at
https://github.com/bpftools/kube-bpf

https://github.com/bpftools/kube-bpf

@fntlnz

eBPF in the
kubectl

Pros:

- Uses the bpftrace DSL
- Very powerful
- Unix philosophy

Cons:

- Can only do what bpftrace can
do

- No custom logic, just use the
DSL

Like DTrace but for kubernetes

@fntlnz

eBPF in the kubectl

@fntlnz

eBPF in the kubectl

Every time the open syscall is executed print the opened file name

@fntlnz

eBPF in the kubectl

Only on this specific node

@fntlnz

eBPF in the kubectl

@fntlnz

eBPF in the kubectl

@fntlnz

eBPF in the kubectl

Every time the function is executed
print the return value

@fntlnz

eBPF in the kubectl

Only on this specific pod

@fntlnz

eBPF in the kubectl

Learn more at
https://github.com/iovisor/kubectl-trace

https://github.com/iovisor/kubectl-trace

@fntlnz@fntlnz

Performance analysis is hard

On kubernetes it’s even harder

eBPF is here to help

Tools are already available

@fntlnz

Kubernetes eBPF links for y’all

● https://github.com/bpftools/kube-bpf
● https://github.com/iovisor/kubectl-trace
● https://github.com/falcosecurity/falco
● https://github.com/draios/sysdig
● https://github.com/bpftools/linux-observability-with-bpf

https://github.com/bpftools/kube-bpf
https://github.com/iovisor/kubectl-trace
https://github.com/falcosecurity/falco
https://github.com/draios/sysdig
https://github.com/bpftools/linux-observability-with-bpf

@fntlnz

Linux Observability with BPF

● Get the PDF for free (link below)
● From me and David Calavera (@calavera)
● Foreword by Jessie Frazelle (@jessfraz)
● There’s stuff I learned in it
● It’s complimentary to this talk
● Still looking at this slide, go get your copy

FREE COPY COURTESY OF SYSDIG

 setns.run/bpf-book

https://setns.run/bpf-book

@fntlnz

Thanks

Tweets at @fntlnz

My DMs are open!

Friendly person

